Work done on a single-particle gas during an adiabatic compression and expansion process

Physical Review E 100, 042110 (2019)

We compute the average work done by an external agent, driving a piston at constant speed, over a single-particle gas going through an adiabatic compression and expansion process. To do so, we get the analytical expression relating the number of collisions between the piston and the particle with the position of the piston during the process. The ergodicity breaking of the system during the process is identified as the source of its irreversibility. In addition, we observe that by using particular initial distributions for the state of the particle, it is possible to preclude the possibility of a net energy transfer from the agent to the particle during the process.


Grupo de Física Estadística

Departamento de Física

Edificio Ip

Carrera 1E # 18A-10

Bogotá, Colombia

Universidad de los Andes | Vigilada Mineducación
Reconocimiento como Universidad: Decreto 1297 del 30 de mayo de 1964.
Reconocimiento personería jurídica: Resolución 28 del 23 de febrero de 1949 Minjusticia.

Web design and programming © Gabriel Téllez